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1.       Introduction   

 

The Pathway fractional integral operator introduced by Nair [12] is defined 

as follows: 
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where 0,0)Re(,),,()(  aCbaLxf   and pathway “parameter” 1.  

 The pathway model is introduced by Mathai [7] and studied by Mathai and 

Haubold ([8],[9]). The pathway model for scalar random variables, for real scalar 

, is denoted by the following probability density function (p.d.f.). 
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where c  is the normalizing 

constant and  is called the pathway parameter. For real , the normalizing 

constant is as follows: 
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For  1 , it is a finite range density with 0})1(1{ 


 xa  and (2) remains 

in the extended generalize type – 1 beta family. The pathway density in (2), for 

1 , includes the extended type – 1 beta density, the triangular density, the 

uniform density and many other p.d.f. 

For 1 , we have 
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,1,00,, x   which is extended generalized type-2 beta model 

for real x. It includes the type- 2 beta density, the F-density, the student t  

density, The Cauchy density and many more. Here it is considered only the case 

of pathway parameter 1 . For 1 ,  (2) and (6) take the exponential form, 

since 
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This includes the generalized Gamma-, the Weibuli-, the Chi-square, the Laplace-, 

and the Maxwell-Boltzmann and other related densities. Therefore, the operator 

introduced in this paper can be related and applicable to a wide variety of 

statistical densities. 

For more details on the pathway model, the reader is referred to the papers 

of Mathai and Haubold ([8],[9]). It is seen that the pathway fractional integral 

operator (1), based on the pathway model of Mathai and Haubold, and using the 

pathway parameter    can lead to other interesting examples of fractional calculus 

operators, related to some probability density functions and applications in 

statistics.  

The H-function, introduced by Fox ([4], p.408) is represented and defined 

in the following manner: 
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z  may be real or complex but not equal to zero and an empty product is 

interpreted as unity; the integers m, n, p, q are such that ,0 pn   ,1 qm   

pUU ,...,1  and qVV ,...,1  are positive integers; puu ,...,1  and qvv ,...,1  are complex 
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numbers and such that no poles of  )1()( ,...,m i Vv ii   coincide with any 

poles of ),1()1( ,...,n i Uu ii    
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Such a contour is possible on account of (9). These assumptions will be retained 

through. 
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(iv) T. z 
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 In case 0T  and  > 0, the integral (8) does not converge for z . In this 

case the integral (8) converges absolutely, if c  is so chosen that  0z , ([18], 

p.50) 
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For more convergence conditions, existence of various contours L and other 

properties, see Mathai and Saxena [10], Kilbas-Saigo-Saxena [5], Kilbas-

Srivastava-Trujillo[6], etc. The importance of Fox’s H-function lies in the fact that 

almost all the elementary and special functions in the literature follow as its 

special cases. These special functions appear in various problems arising in 

theoretical and applied branches of mathematics, statistics, physics, engineering 

and other areas. 

The series representation of the H-function has been studied in [17] 
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the convergence conditions and other details are given in [17]. 

Srivastava ([14], p.1,eqn. (1)] introduced the general class of polynomials 
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where m  is an arbitrary positive integer and the coefficients )0,(, lnA ln  are 

arbitrary constants, real or complex. By suitably specializing the coefficients n,A

occurring in (19) can be reduced to the classical orthogonal polynomials and the 

generalized hypergeometric polynomials. For further details, we can refer to 

Srivastava and Singh [15], Srivastava [14], Srivastava and Pathan [16] and 

Erdélyi [3] . 

The following result will be required in our sequel 
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2.     The main theorem 
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Proof. Making use of (19), (17), (8) and (1) and applying to a known result (20), 

after a little simplification, we arrive at the desired result (21). 
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Here qpψ denotes the generalized Wright hypergeometric function [18]. 

Proof. The result in (23) can be obtained by putting in the theorem 1, 
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replacing t  by 
2

t
, after a little simplification, we have the required result. 

 

3.    Special cases 
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Here qp  
denotes the generalized Wright hypergeometric function [18]. 

(D) Letting 0n' in the results (21) through (23), we get the results (11), 

(20) and (23)  obtained by Chaurasia and Gill in [2]. 

(E) Taking 0n' and assigning some suitable values to H-function in 

Theorems 1,2 and 3, we get the results derived by Nair in [12]. 

(F) By giving suitable values to the parameters in the results obtained by Nair 

[12], the new, known, unknown and several other interesting results from 

our results can be obtained. 

 

4.     Conclusion 

 

         In this paper, we introduce a new fractional integration operator associated 

with the pathway model and pathway probability density. The object of the 

present paper is to study a pathway model and pathway probability density for 

certain products of special functions with general argument. The importance of 

our results lies in their manifold generality. In view of the generality of H-

functions and general class of polynomials, on specializing the various parameters 

therein, we can obtained from our main result, several result containing 

remarkably wide variety of useful functions and their various special cases. Thus 

the main results presented in this article would at once yield a very   large number 

of results containing a large variety of simpler special functions occurring 

scientific and technological fields.  
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